人工智能大数据高科技,人工智能大数据高科技的应用
大家好,今天小编关注到一个比较有意思的话题,就是关于人工智能大数据高科技的问题,于是小编就整理了2个相关介绍人工智能大数据高科技的解答,让我们一起看看吧。
人工智能大数据专业是干什么的?
1、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。
PS:经常会用到的语言包括Python、Java、C或者C++,有些人用Python或者Java比较多。有时用MapReduce写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
2、Hadoop开发工程师
熟练掌握Hadoop整个生态系统的组件如:Yarn,HBase、Hive、Pig等重要组件,能够实现对平台监控、辅助运维系统的开发。hadoop工程师主要是偏开发层面,指的是围绕大数据系平台系统级的研发人员, 熟练Hadoop大数据平台的核心框架,能够使用Hadoop提供的通用算法,
大数据和人工智能有什么关联?
大数据,百度百科上是这么定义的,指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
简单说,就是不是简单的将你的性别、淘宝记录啥的数据收集起来,通常做大数据的公司还会基于这些数据进行分门别类的整理,并且对整理后的数据进行分析,比如分析出你喜欢什么样的风格的衣服,你的喜好等信息。
关于大数据,IBM概括出大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
那怎么实现上述的五大特点呢?
我们都知道,所谓大数据,就是大量的信息,利用普通的加减乘除啥的肯定会把电脑给跑废掉,不过这里的电脑不是我们用的普通的电脑,他们通常都有数据处理中心,就是高配的商业服务器。但即便高配,如果只是用简单的算法来处理,也很浪费时间。
所以这里就需要神经网络算法、机器学习等技术处理手段,软件和硬件结合起来对数据库中的数据进行处理,而使用的这些算法、机器学习等分析技术就属于人工智能。
其实人工智能是很多技术的总称,包括机器人、语言识别、图像识别、自然语言处理和专家系统等,因为人工智能尚在发展阶段,所以也没有非常精准的定义,在行业内,人工智能与大数据密不可分,可以将很多大数据的应用(云计算平台等)归结为人工智能。
大数据是人工智能发展的重要支撑力,为人工智能提供“养料”。例如,在 AlphaGo 的学习过程中,核心数据是来自互联网的 3000 万例棋谱。
互联网和智能手机的快速普及催生了海量数据。无论是人们无论是用手机、跑步、看电视还是行驶在车流中,几乎所有的活动都会留下数字足迹,海量数据已汇成数据洪流,加上算法的突破和计算力的支撑成就了人工智能获得突破、走向应用。
所以说,没有大数据就没有人工智能的发展。反过来看,人工智能让大数据的价值得以最大程度的挖掘运用,而如果没有人工智能,大数据的价值会大打折扣。
大数据是人工智能的基石,目前的深度学习主要是建立在大数据的基础上,即对大数据进行训练,并从中归纳出可以被计算机运用在类似数据上的知识或规律。那么,到底什么是大数据呢?
人们经常笼统地说,大数据就是大规模的数据。
这个说法并不准确。“大规模”只是指数据的量而言。数据量大,并不代表着数据一定有可以被深度学习算法利用的价值。例如,地球绕太阳运转的过程中,每一秒钟记录一次地球相对太阳的运动速度、位置,可以得到大量数据。可如果只有这样的数据,其实并没有太多可以挖掘的价值,因为地球围绕太阳运转的物理规律,人们已经研究得比较清楚了。
那么,大数据到底是什么?大数据是如何产生的?什么样的数据才最有价值,最适合作为计算机的学习对象呢?
根据马丁·希尔伯特的总结,今天我们常说的大数据其实是在2000年后,因为信息交换、信息存储、信息处理三个方面能力的大幅增长而产生的数据:
信息交换:据估算,从1986年到2007年这20年间,地球上每天可以通过既有信息通道交换的信息数量增长了约217倍,这些信息的数字化程度,则从1986年的约20%增长到2007年的约99.9%。在数字化信息爆炸式增长的过程里,每个参与信息交换的节点都可以在短时间内接收并存储大量数据。
信息存储:全球信息存储能力大约每3年翻一番。从1986年到2007年这20年间,全球信息存储能力增加了约120倍,所存储信息的数字化程度也从1986年的约1%增长到2007年的约94%。1986年时,即便用上我们所有的信息载体、存储手段,我们也不过能存储全世界所交换信息的大约1%,而2007年这个数字已经增长到大约16%。信息存储能力的增加为我们利用大数据提供了近乎无限的想象空间。
信息处理:有了海量的信息获取能力和信息存储能力,我们也必须有对这些信息进行整理、加工和分析的能力。谷歌、Facebook等公司在数据量逐渐增大的同时,也相应建立了灵活、强大的分布式数据处理集群。
到此,以上就是小编对于人工智能大数据高科技的问题就介绍到这了,希望介绍关于人工智能大数据高科技的2点解答对大家有用。